The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Human modeling and relighting are two fundamental problems in computer vision and graphics, where high-quality datasets can largely facilitate related research. However, most existing human datasets only provide multi-view human images captured under the same illumination. Although valuable for modeling tasks, they are not readily used in relighting problems. To promote research in both fields, in this paper, we present UltraStage, a new 3D human dataset that contains more than 2K high-quality human assets captured under both multi-view and multi-illumination settings. Specifically, for each example, we provide 32 surrounding views illuminated with one white light and two gradient illuminations. In addition to regular multi-view images, gradient illuminations help recover detailed surface normal and spatially-varying material maps, enabling various relighting applications. Inspired by recent advances in neural representation, we further interpret each example into a neural human asset which allows novel view synthesis under arbitrary lighting conditions. We show our neural human assets can achieve extremely high capture performance and are capable of representing fine details such as facial wrinkles and cloth folds. We also validate UltraStage in single image relighting tasks, training neural networks with virtual relighted data from neural assets and demonstrating realistic rendering improvements over prior arts. UltraStage will be publicly available to the community to stimulate significant future developments in various human modeling and rendering tasks.
translated by 谷歌翻译
In this paper, we present a pure-Python open-source library, called PyPop7, for black-box optimization (BBO). It provides a unified and modular interface for more than 60 versions and variants of different black-box optimization algorithms, particularly population-based optimizers, which can be classified into 12 popular families: Evolution Strategies (ES), Natural Evolution Strategies (NES), Estimation of Distribution Algorithms (EDA), Cross-Entropy Method (CEM), Differential Evolution (DE), Particle Swarm Optimizer (PSO), Cooperative Coevolution (CC), Simulated Annealing (SA), Genetic Algorithms (GA), Evolutionary Programming (EP), Pattern Search (PS), and Random Search (RS). It also provides many examples, interesting tutorials, and full-fledged API documentations. Through this new library, we expect to provide a well-designed platform for benchmarking of optimizers and promote their real-world applications, especially for large-scale BBO. Its source code and documentations are available at https://github.com/Evolutionary-Intelligence/pypop and https://pypop.readthedocs.io/en/latest, respectively.
translated by 谷歌翻译
Transformers are widely used in NLP tasks. However, current approaches to leveraging transformers to understand language expose one weak spot: Number understanding. In some scenarios, numbers frequently occur, especially in semi-structured data like tables. But current approaches to rich-number tasks with transformer-based language models abandon or lose some of the numeracy information - e.g., breaking numbers into sub-word tokens - which leads to many number-related errors. In this paper, we propose the LUNA framework which improves the numerical reasoning and calculation capabilities of transformer-based language models. With the number plugin of NumTok and NumBed, LUNA represents each number as a whole to model input. With number pre-training, including regression loss and model distillation, LUNA bridges the gap between number and vocabulary embeddings. To the best of our knowledge, this is the first work that explicitly injects numeracy capability into language models using Number Plugins. Besides evaluating toy models on toy tasks, we evaluate LUNA on three large-scale transformer models (RoBERTa, BERT, TabBERT) over three different downstream tasks (TATQA, TabFact, CrediTrans), and observe the performances of language models are constantly improved by LUNA. The augmented models also improve the official baseline of TAT-QA (EM: 50.15 -> 59.58) and achieve SOTA performance on CrediTrans (F1 = 86.17).
translated by 谷歌翻译
Non-autoregressive neural machine translation (NAT) models suffer from the multi-modality problem that there may exist multiple possible translations of a source sentence, so the reference sentence may be inappropriate for the training when the NAT output is closer to other translations. In response to this problem, we introduce a rephraser to provide a better training target for NAT by rephrasing the reference sentence according to the NAT output. As we train NAT based on the rephraser output rather than the reference sentence, the rephraser output should fit well with the NAT output and not deviate too far from the reference, which can be quantified as reward functions and optimized by reinforcement learning. Experiments on major WMT benchmarks and NAT baselines show that our approach consistently improves the translation quality of NAT. Specifically, our best variant achieves comparable performance to the autoregressive Transformer, while being 14.7 times more efficient in inference.
translated by 谷歌翻译
Online forms are widely used to collect data from human and have a multi-billion market. Many software products provide online services for creating semi-structured forms where questions and descriptions are organized by pre-defined structures. However, the design and creation process of forms is still tedious and requires expert knowledge. To assist form designers, in this work we present FormLM to model online forms (by enhancing pre-trained language model with form structural information) and recommend form creation ideas (including question / options recommendations and block type suggestion). For model training and evaluation, we collect the first public online form dataset with 62K online forms. Experiment results show that FormLM significantly outperforms general-purpose language models on all tasks, with an improvement by 4.71 on Question Recommendation and 10.6 on Block Type Suggestion in terms of ROUGE-1 and Macro-F1, respectively.
translated by 谷歌翻译
事件摄像头是一种新兴的生物启发的视觉传感器,每像素亮度不同步地变化。它具有高动态范围,高速响应和低功率预算的明显优势,使其能够在不受控制的环境中最好地捕获本地动作。这激发了我们释放事件摄像机进行人姿势估计的潜力,因为很少探索人类姿势估计。但是,由于新型范式从传统的基于框架的摄像机转变,时间间隔中的事件信号包含非常有限的信息,因为事件摄像机只能捕获移动的身体部位并忽略那些静态的身体部位,从而导致某些部位不完整甚至在时间间隔中消失。本文提出了一种新型的密集连接的复发架构,以解决不完整信息的问题。通过这种经常性的体系结构,我们可以明确地对跨时间步骤的顺序几何一致性进行明确模拟,从而从以前的帧中积累信息以恢复整个人体,从而从事件数据中获得稳定且准确的人类姿势估计。此外,为了更好地评估我们的模型,我们收集了一个基于人类姿势注释的大型多模式事件数据集,该数据集是迄今为止我们所知的最具挑战性的数据集。两个公共数据集和我们自己的数据集的实验结果证明了我们方法的有效性和强度。代码可以在线提供,以促进未来的研究。
translated by 谷歌翻译
许多数据分析任务在很大程度上依赖对表的深入了解(多维数据)。在整个任务中,都存在表字段 /列的共同使用的元数据属性。在本文中,我们确定了四个这样的分析元数据:测量/维度二分法,公共场作用,语义场类型和默认聚集函数。尽管这些元数据面临不足的监督信号的挑战,利用现有的知识和理解分布。为了将这些元数据推理为原始表,我们提出了多任务元数据模型,该模型将现场分布和知识图信息融合到预训练的表格模型中。对于模型培训和评估,我们通过使用下游任务的各种智能监督来收集分析元数据的大型语料库(来自私人电子表格和公共表格数据集的〜582K表)。我们的最佳模型的精度= 98%,命中率在TOP-1> 67%,精度> 80%和四个分析元数据推理任务的精度= 88%。它的表现优于基于规则,传统机器学习方法和预训练的表格模型的一系列基线。分析元数据模型被部署在流行的数据分析产品中,帮助下游智能功能,例如Insights挖掘,图表 /枢轴表建议和自然语言QA ...
translated by 谷歌翻译
Bird's Eye View(BEV)语义分割在自动驾驶的空间传感中起着至关重要的作用。尽管最近的文献在BEV MAP的理解上取得了重大进展,但它们都是基于基于摄像头的系统,这些系统难以处理遮挡并检测复杂的交通场景中的遥远对象。车辆到车辆(V2V)通信技术使自动驾驶汽车能够共享感应信息,与单代理系统相比,可以显着改善感知性能和范围。在本文中,我们提出了Cobevt,这是可以合作生成BEV MAP预测的第一个通用多代理多机构感知框架。为了有效地从基础变压器体系结构中的多视图和多代理数据融合相机功能,我们设计了融合的轴向注意力或传真模块,可以捕获跨视图和代理的局部和全局空间交互。 V2V感知数据集OPV2V的广泛实验表明,COBEVT实现了合作BEV语义分段的最新性能。此外,COBEVT被证明可以推广到其他任务,包括1)具有单代理多摄像机的BEV分割和2)具有多代理激光雷达系统的3D对象检测,并实现具有实时性能的最新性能时间推理速度。
translated by 谷歌翻译
由于字体,大小,颜色和方向的各种文本变化,任意形状的场景文本检测是一项具有挑战性的任务。大多数现有基于回归的方法求助于回归文本区域的口罩或轮廓点以建模文本实例。但是,回归完整的口罩需要高训练的复杂性,并且轮廓点不足以捕获高度弯曲的文本的细节。为了解决上述限制,我们提出了一个名为TextDCT的新颖的轻巧锚文本检测框架,该框架采用离散的余弦变换(DCT)将文本掩码编码为紧凑型向量。此外,考虑到金字塔层中训练样本不平衡的数量,我们仅采用单层头来进行自上而下的预测。为了建模单层头部的多尺度文本,我们通过将缩水文本区域视为正样本,并通过融合来介绍一个新颖的积极抽样策略,并通过融合来设计特征意识模块(FAM),以实现空间意识和规模的意识丰富的上下文信息并关注更重要的功能。此外,我们提出了一种分割的非量最大抑制(S-NMS)方法,该方法可以过滤低质量的掩模回归。在四个具有挑战性的数据集上进行了广泛的实验,这表明我们的TextDCT在准确性和效率上都获得了竞争性能。具体而言,TextDCT分别以每秒17.2帧(FPS)和F-measure的F-MEASIE达到85.1,而CTW1500和Total-Text数据集的F-Measure 84.9分别为15.1 fps。
translated by 谷歌翻译